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1. Introduction 

The energetic material pentaerythritol tetranitrate (PETN), shown in figure 1, is extensively used 
in military applications as an initiating or boosting high explosive.  Nearly two decades ago, 
PETN was subjected to numerous characterization studies aimed at understanding a wide variety 
of its chemical and physical properties that relate to its sensitivity, stability, and performance (1).  
The stability of the material under high temperature has been investigated, and several 
mechanisms of decomposition are known (2).  Several experiments were also performed under 
high pressure to discern the behavior of PETN under high density (3–6), and a phase transition 
was reported near 4.3 GPa using neutron diffraction (7).  Due to the experimental limitations that 
existed at the time, only pressures below 10 GPa were obtainable.  However, with the advent of 
readily available diamond anvil cells, there has been a rising interest in the past 5 years in the 
high-pressure behavior of energetic materials. 

 

(a) (b) (c) (d)  

Figure 1.  The energetic material PETN:  (a) the molecular schematic (C(CH2ONO2)4), (b) the S4 molecular 
symmetry, (c) the D2 molecular symmetry, and (d) the C2(α) molecular symmetry. 

 
At atmospheric pressure, below the melting temperature of 141.3 °C (1), PETN appears as white 
crystals assembled into a tetragonal structure (P-421c) with four molecules per unit cell arranged 
in an S4 molecular symmetry.  Both infrared (6, 8, 9) and Raman (9–10) characterizations of this 
phase exist, and several theoretical calculations of the vibrational frequencies of the crystal have 
been reported (8–13).  The mechanical properties of PETN at ambient conditions are quite 
interesting, as PETN exhibits a strong directional dependence to shock-initiated detonation (5, 
14–22).  Although PETN is classified as quite easily detonated by shock, several directions of 
impact with respect to the crystal structure exist that will not cause detonation, even when the 
shock wave fully crosses the crystal.  Researchers have found that shock-initiated detonation 
occurs along the a-axis of the crystal but not along the c-axis (14–22). 
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The behavior of PETN under high-pressure conditions is quite controversial.  A high-pressure 
phase transition was reported during a Raman spectroscopic study near 5 GPa (23), which 
corroborated with the earlier neutron diffraction study (7).  A detailed comparison of the 
experimental vibrational frequencies obtained under high-pressure conditions to calculated 
vibrational frequencies of various conformers of PETN with different molecular symmetry 
provided evidence for a molecular symmetry change (S4 to C2) (23).  Subsequent experimental 
studies have reported modifications in the Raman spectra and x-ray diffraction patterns, such as 
the appearance or disappearance of peaks, large spectroscopic shifts of the Raman frequencies to 
higher energies, and splitting of the x-ray diffraction peaks (12, 24–26).  Recently, changes in the 
vibrational patterns were shown to be strongly dependent upon the stress and strain within the 
sample.  Stress within the diamond anvil cell can be controlled through the use of different 
pressure-transmitting media, which decreases or increases the strain within the sample.  Under 
hydrostatic conditions with nearly no sample strain, the modifications in the vibrational spectra 
indicated a symmetry change to the D2 molecular geometry, but no crystallographic phase 
transition was observed between ambient pressure and 14 GPa.  Several less hydrostatic samples 
with a higher degree of stress/strain showed a significant loss of vibrational resolution in both the 
number of visible peaks and intensity, presumably due to the activation of the PETN slip planes 
(27).  The loss of intensity, coupled with the disappearance of several vibrational peaks, may 
have been misconstrued as a phase transition (27).   

In the past year, a combined experimental/theoretical report (28) provided new evidence for 
Dreger’s earlier proposal (23) that PETN undergoes a structural transition below 6 GPa to an 
orthorhombic phase with a space group of P21212.  The quantum chemical calculations employed 
in this study indicated a shear-stress-induced transition, which is ferroelastic in nature.  Such a 
phase transition allows for the possibility of soft shear components to propagate along specific 
directions within the PETN molecule, which may relate to the observed dependence of the shock 
sensitivity to crystalline orientation (28).  However, this suggestion was based on Landau theory 
which is not entirely valid at high pressures since many variables of the theory assume any 
change in volume is negligible (29).  Upon pressure increase, Landau theory dictates the values 
of all parameters will change due to the volume variation with pressure, which limits its 
applicability at variable pressures. 

Although PETN is well characterized under a wide variety of extreme conditions, such as high 
temperature and high pressure, the behavior of PETN is still largely unknown within certain 
temperature and pressure ranges.  To expand the available knowledge of PETN, Raman 
spectroscopic investigations were undertaken as a function of both temperature and pressure 
within the ranges of 20 to 298 K and ambient pressure to 14 GPa.  Additionally, if PETN 
undergoes a ferroelectric phase transition near 5 GPa, evidence of the transition is expected to 
become increasingly apparent at low temperatures.  This is due to a decrease in thermal motion 
which tends to destroy the ferroelectric disorder at higher temperatures.  The results presented 
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here expand, in depth, upon previously reported material and are part of a research program 
aimed at extending the current understanding of pressure-driven structural transitions of 
energetic materials through employment of a multitechnique approach. 

 

2. Experimental Methodology 

Large grains of polycrystalline PETN were obtained from the Naval Surface Warfare Center at 
Indian Head, MD, and used without further purification.  Single crystals of PETN with an 
approximate diameter of 175 μm and a thickness between 35 and 60 μm were selected from the 
polycrystalline sample and loaded into the center of a rhenium gasket hole with a diameter of 
250 μm.  Helium gas, which was used as the pressure-transmitting medium for all experimental 
measurements, was loaded into the Mao–Bell diamond anvil cell (DAC) using a specialized gas 
chamber discussed elsewhere (30).  The DAC was mounted in a cryostat equipped with a spring-
loaded lever arm system, which enables the user to both increase and decrease the pressure from 
outside the cryostat.  The temperature was monitored and controlled through two resistive 
heaters and a diode sensor attached to the DAC. 

In situ Raman spectra of PETN were measured to pressures near 15 GPa and temperatures 
between 20 K and 298 K.  The pressure on the sample was determined from the frequency shift 
of the R1 fluorescence line (31).  The excitation radiation was an argon ion laser (Coherent 
Innova 90) operating at 488 nm with a power of 0.5 W with a laser spot size of ~7 μm in 
diameter.  A 460-mm focal length f/5.3 imaging spectrograph (ISA HR 460) equipped with an 
1800-groves/mm grating, which provides a spectral resolution of ±4.0 cm–1, was used for all 
Raman experiments.  Prior to any experimental measurements, a wavelength calibration of the 
spectrograph was performed with a neon lamp; this method of calibration has an accuracy of 
±1.0 cm–1 (32).   

Synchrotron infrared (IR)-absorption experiments were performed at beamline U2A of the 
National Synchrotron Light Source of Brookhaven National Laboratory.  The synchrotron light 
is extracted from the vacuum ultraviolet storage ring in a 40- × 40-mrad solid angle.  The 
collimated beam is delivered through a vacuum pipe system and directed into a Bruker IFS 66v 
Fourier transform infrared spectrometer.  Extensive detail of the optical layout of this beamline is 
available (33).  The resolution used for all measurements was 4 cm–1. 
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3. Results and Discussion 

When compressed at room temperature (298 K), PETN shows a change in the molecular 
symmetry from S4 → D2 between 6.3 and 10.9 GPa (figures 2 and 3).  The exact pressure of the 
symmetry transformation is known to be strongly dependent on the conditions within the cell as 
well as the crystalline phase (i.e., powder or single crystal) (27), but in this work, the transition 
pressure was near 8.1 GPa.  The transformation can be visually observed since single-crystal 
PETN normally appears translucent, but after the transformation, the sample looks slightly 
opaque.  In most cases, the transformation happens instantaneously and goes to completion 
within seconds as determined by Raman spectroscopy.  This transformation can be detected by 
the splitting of several vibrational modes in the Raman spectrum (figure 2) and by the 
fluctuations in the infrared intensity over the pressure range studied (figure 3).  The value of the 
pressure onset of the modification in the molecular symmetry is not temperature dependent 
within the range of 20 to 298 K (figures 2–6), suggesting the geometry modification observed 
near 8.1 GPa is not ferroelastic in nature.  Data taken upon pressure release and compared to the 
data from the compression sequence did not reveal any measurable differences in the 
frequencies, although the vibrational intensities were much lower in the recovered sample.  This 
can be attributed to the crystalline damage that occurs as the slip planes are activated (27, 34).  

Figures 4–6 show the temperature-dependent Raman spectra of single-crystal PETN as a 
function of pressure.  The low-temperature Raman spectra of PETN are very similar to those 
obtained at higher temperatures, although at lower temperatures considerably more peaks are 
observed.  The increased number of peaks at low temperatures partially results from increased 
vibrational splitting as a larger percentage of molecules occupy the ground state, as well as an 
inherent design problem with the cryostat, which permits small vibrational oscillations as the 
spectra are being collected.  A broad fluorescence background appears in several spectra that 
may indicate sample damage.  Also, at the present time it remains very difficult to collect the IR 
spectra at low temperature due to the optical setup at the synchrotron.  As a result, all IR 
measurements were performed at room temperature.   

The pressure dependences of the wavenumbers of the vibrational bands differ slightly among the 
different temperatures measured, but there is no abrupt shift near 8.1 GPa as the geometry 
transformation occurs.  The frequency shifts (δν/δP) of the vibrational bands at different 
temperatures are summarized in table 1.  Interestingly, the majority of the vibrational bands show 
mode hardening upon decreasing temperature as indicated by an increase in δν/δP.  Mode 
hardening clearly indicates that the local ordering of the molecule changes with decreasing 
temperature, but this phenomenon may closely correlate with the pronounced brittleness of 
PETN at a low temperature.  In contrast to other energetic materials, the brittleness of PETN 
becomes increasingly evident under conditions of large stress/strain due to the strong anisotropic 
behavior along particular crystalline slip planes.  As the material contracts at low temperatures, 
small crystalline voids may occur which readily propagate along the slip planes.  
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Figure 2.  Representative Raman spectra of a single-crystal PETN compressed with 

a helium pressure medium at 298 K.  The strong first order scattering 
from the diamond anvils is observed in the spectral range between 1300 
and 1400 cm–1.  The intensity of this feature is truncated for better 
resolution of the PETN vibrational peaks.  The spectral region between 
1700 and 2700 cm–1 is omitted because of the low vibrational intensity 
observed.  Each Raman profile is vertically scaled for the sake of clarity. 

In these experiments, the largest degree of mode hardening is observed for the CH2 stretches 
with average changes of (1.5 cm–1/GPa)/K.  This seems to be quantitatively correct as a primary 
shear plane lies perpendicular to the CH2 groups. 

Surprisingly, the S4 and D2 molecular geometries have a very large domain of pressure and 
temperature metastability.  The pressure dependence of the Raman and IR spectra were studied in 
wide pressure range at 300 K and at low temperatures.  It is somewhat surprising that the D2 
molecular symmetry remains energetically favorable at low temperatures and high pressures, as 
it is not the most compact.  On average, the lower symmetry conformers, such as C2 (α) (figure 
1), of PETN take up ~10% less space than the D2 conformer.  At higher compressions, the 
increase in the van der Waals repulsions becomes comparable with the intramolecular repulsion 
forces that control the molecular geometry.  Because other conformers are more compact than the 
D2 conformer, they will produce less intermolecular repulsion energy in the crystal.  It is expected 
that when the energy gain exceeds the energy gap between the conformers, the PETN molecules 
will be forced to change conformation.  However, there is no evidence of an additional symmetry 
change at higher pressures, so another factor must play a role in the stabilization of the D2 
conformer.  It is suspect that the presence of the shear planes stabilizes the D2 conformer at such 
extreme conditions, and further experiments are being pursued to confirm this. 
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Figure 3.  Representative IR spectra of powdered PETN compressed with a 

helium-pressure medium at 298 K.  The spectral region between 
1800 and 2600 cm–1 is omitted because of the strong nitrogen 
absorption of the diamond anvils within this spectral range.  Each 
vibrational profile is vertically scaled for the sake of clarity. 

 

 
Figure 4.  Representative Raman spectra of single-crystal PETN compressed with a helium-

pressure medium at 225 K within the spectral range of 150 to 1800 cm–1 (left) and 
2900 to 3300 cm–1 (right).  Strong first order scattering from the diamond anvils 
appears in the spectra between 1300 and 1400 cm–1.  The intensity of this 
feature is truncated for better resolution of the PETN vibrational peaks.  Each 
Raman profile is vertically scaled for the sake of clarity.  Asterisks near 3150 
and 3275 cm–1 indicate vibrational features that do not arise from PETN.
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Figure 5.  Representative Raman spectra of single-crystal PETN compressed with a helium-

pressure medium at 100 K within the spectral range of 150 to 1800 cm–1 (left) and 
2900 to 3300 cm–1 (right).  Strong first order scattering from the diamond anvils 
appears in the spectra between 1300 and 1400 cm–1.  The maxima is truncated to 
permit better resolution of the PETN vibrational peaks.  Each Raman profile is 
vertically scaled for the sake of clarity.  Asterisks near 3150, 3275, and 3240 cm–1 
indicate vibrational features that do not arise from PETN. 

 
Figure 6.  Representative Raman spectra of single-crystal PETN compressed with a helium-

pressure medium at 20 K within the spectral range of 150 to 1700 cm–1 (left) and 2900 
to 3300 cm–1 (right).  Strong first order scattering from the diamond anvils appears in 
the spectra between 1300 and 1400 cm–1.  The intensity of this feature is truncated for 
better resolution of the PETN vibrational peaks.  Each Raman profile is vertically scaled 
for the sake of clarity.  Asterisks near 3150 and 3275 cm–1 indicate vibrational features 
that do not arise from PETN.
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Table 1.  Summary of available spectroscopic data for PETN.  Raman and IR measurements are reported from this study at room temperature, as well as 
previously reported IR (9), Raman (9), and neutron (13) vibrational data.  Mode shifts (δν [cm–1]/δP [GPa]) are the second-order polynomial 
slopes of the frequencies with respect to pressure and are shown for various temperatures.   

Raman IR Previously Reported Experimental Values 
cm–1 

(298 K) 
δν /δP 

(298 K) 
δν/δP 

(225 K) 
δν/δP 

(100 K) 
δν/δP  
(20 K) 

cm–1  
(298 K) 

δν/δP 
(298 K) 

IRb 

(cm–1) 
Ramanb 

(cm–1) 
Neutronc 

(cm–1) 
Assignmenta Mode 

No.a 
— — — — 3.36 — — — — 127 CC t 9 

144 5.20 — — 3.14 150 5.30 — — 151 C-O-N w 10 
189 3.91 — — 4.67 — — — — 194 O-CH2t + CCC def 12 
— — 3.70 3.43 — — — — — 210 CONO2 r 13 

225 3.21 — — 3.72 228 –0.10 — — 226 Combination bands — 
255 3.66 4.84 2.75 3.50 — — — — 250 ONO2 + C5 skel 14 
278 4.10 3.90 3.30 3.43 272 6.18 — — 274 Combination band — 
324 4.64 4.59 4.50 4.45 326 6.71 — 319 315 CH2 r + CCC def 17 
— — 3.73 — 3.43 — — — — 347 Combination band — 
— — — — — 396 7.42 — — 403 Combination band — 
— — 1.26 — — — — — — — — — 

457 3.74 3.71 4.05 4.01 459 4.27 460 459 484 CCC def + O'N st + NO2 r 18 
534 3.44 — — — — — — 539 540 C5 skel +CH2 w + O'-N st 19 
577 3.93 — — — — — — 589 597 CC b + ONO2 r 20 
— — 2.45 2.85 2.82   619, 618 619 613 C5 skel + ONO2r 21 
— — 3.07 3.10 3.25 621 4.12 623, 624 624 — CCC def + ONO2r 22 

675 3.13 3.21 3.54 3.63 698 –0.29 — 676 669 O'-N st + CC st +NO2 sc 23 
704 3.25 3.30 3.30 3.60 704 2.44 703, 704 704 700 O'-N st + CCC def + NO2r 24 
747 1.69 2.72 2.75 2.77 754 0.56 746, 746 746 740 CCC def + O'-N st 25 
— — — –0.31 — — — — — 751 ONO2 umb 26 
— — — 0.23 — — — 754, 755 755 766 ONO2 umb +CCC def 28 

842 2.98 2.96 2.97 — 847 1.79 — — 840 Combination band — 
869 3.17 — — 2.98 — — — 839 842 CC st 29 
— — 3.17 3.35 3.43 900 5.63 — 873 867 O'-N st + CC st 32 

939 4.45 4.44 4.89 4.82 941 3.79 — 900 903 CCC def + CH2 r 33 
1006 1.70 1.71 1.84 1.86 1003 0.94 1003, 1003 1004 1005 CO st + CCC def 36 
1044 1.76 1.88 1.92 1.95 1036 1.46 — 1044 1048 CH2 t + CCb 37 
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Table 1.  Summary of available spectroscopic data for PETN.  Raman and IR measurements are reported from this study at room temperature, as well as 
previously reported IR (9), Raman (9) and neutron (13) vibrational data.  Mode shifts (δν [cm–1]/δP [GPa]) are the second-order polynomial 
slopes of the frequencies with respect to pressure and are shown for various temperatures (continued).   

Raman IR Previously Reported Experimental Values 
cm–1 

(298 K) 
δν /δP 

(298 K) 
δν/δP 

(225 K) 
δν/δP 

(100 K) 
δν/δP  
(20 K) 

cm–1  
(298 K) 

δν/δP 
(298 K) 

IRb 
(cm–1) 

Ramanb 

(cm–1) 
Neutronc 

(cm–1) 
Assignmenta Mode 

No.a 
1195 1.98 2.01 2.22 2.30 — — 1159 — 1160 CH2 w + C5 skel 39 
1251 1.58 1.57 1.58 1.62 1273 3.00 — 1253 — CHb 41 

— — — 1.75 1.82 1305 2.04 1284, 1285 1286 — NO2 st + CH b + C5 skel 44 
1402 2.24 2.33 2.37 2.38 1397 2.92 1396, 1396 1397 — CH2 w + CCC def 48 
1464 1.67 1.59 1.73 1.81 1475 0.56 — — — CH2 sc 50 
1506 2.23 — 2.21 2.25 — — 1509 1512 — CH2 sc 51 

— — — — — 1545 2.20 — 1539 — — — 
1623 2.24 2.28 2.20 2.24 1612 0.90 — 1633 — NO2 st (a) 53 
1658 1.39 1.26 1.53 — 1647 3.18 1655, 1661 1665 — NO2 st (a) 54 
2767 4.20 — 3.67 — 2849 0.00 — — — CH2 st (s) 56 
2904 3.30 — — — 2904 4.56 — — — CH2 st (s) 57 
2915 5.80 — — — 2916 6.13 2910, 2916 2918 — CH2 st (a) 61 
2971 4.69 — — — 2985 8.54 2984, 2985 2987 — CH2 st (s) 58 
2971 7.06 6.92 8.02 8.50 — — — — — CH2 st (a) 59 
3016 7.60 5.60 8.47 9.08 3022 10.48 3023, 3023 3025 — CH2 st (a) 60 

ast = stretch, b = bend, sc = scissors, umb = umbrella, skel = skeletal, t = torsion, def = deformation, r = rock, w = wag, (a) = antisymmetric, (s) = symmetric, and O’ = ester 
oxygen. 

bAssignments are given based on Gruzdkov and Gupta (9). 
cUnpublished results (13).  
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4. Conclusions 

The results discussed herein provide important insights into the behavior of single crystal PETN 
at high pressure and low temperatures.  Instead of a high-pressure phase transition, we find a 
molecular geometry modification from S4 to D2 symmetry.  Our data show that the symmetry 
modification is not temperature dependent and indicates the D2 geometry is metastable in much 
of the P-T range over which it is observed, since it is typically obtained only as a result of 
compression.  An important general conclusion of this work is that the high-pressure behavior is 
more complex than previously thought due to the presence of multiple factors, such as 
stress/strain and crystal condition, which play a key role in the behavior of the material. 
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